Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1140220150200030165
´ëÇѾϿ¹¹æÇÐȸÁö
2015 Volume.20 No. 3 p.165 ~ p.171
Molecular Targeting of ERKs/RSK2 Signaling Axis in Cancer Prevention
Yoo Sun-Mi

Cho Sung-Jun
Cho Yong-Yeon
Abstract
RSK2 is a downstream signaling protein of ERK1 and ERK2 and plays a key role in physiological homeostasis. For this reason, RSK2 is a highly conserved protein among the p90RSK family members. In its location in the signaling pathway, RSK2 is a kinase just upstream of transcription and epigenetic factors, and a few kinases involved in cell cycle regulation and protein synthesis. Moreover, activation of RSK2 by growth factors is directly involved in cell proliferation, anchorage-independent cell transformation and cancer development. Direct evidences regarding the etiological roles of RSK2 in cancer development in humans have been published by our research group illustrating that elevated total- and phospho-RSK2 protein levels mediated by ERK1 and ERK2 are higher in skin cancer tissues compared to normal skin tissues. Notably, it has been shown that RSK2 ectopic expression in JB6 Cl41 cells induces cell proliferation and anchorage- independent cell transformation. Importantly, knockdown of RSK2 suppresses Ras-mediated foci formation and anchorage-independent colony growth of cancer cells. Kaempferol is a one of the natural compounds showing selectivity in inhibiting RSK2 activity in epidermal growth factor-induced G1/S cell cycle transition and cell transformation. Thus, ERKs/RSK2 signaling axis is an important target signaling molecule in chemoprevention.
KEYWORD
Carcinogenesis, Neoplastic cell transformation, Molecular targeting, ERKs/RSK2 signaling, Natural compounds
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed